3.6.5 \(\int (a+b \sin ^2(e+f x))^{3/2} \tan ^4(e+f x) \, dx\) [505]

3.6.5.1 Optimal result
3.6.5.2 Mathematica [A] (verified)
3.6.5.3 Rubi [A] (verified)
3.6.5.4 Maple [A] (verified)
3.6.5.5 Fricas [F]
3.6.5.6 Sympy [F(-1)]
3.6.5.7 Maxima [F]
3.6.5.8 Giac [F]
3.6.5.9 Mupad [F(-1)]

3.6.5.1 Optimal result

Integrand size = 25, antiderivative size = 275 \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=-\frac {(3 a+8 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {8 (a+2 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {a (5 a+8 b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a+2 b) \sin ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f}+\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^3(e+f x)}{3 f} \]

output
-1/3*(3*a+8*b)*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f+8/3*(a+2*b 
)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b* 
sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-1/3*a*(5*a+8*b)*EllipticF 
(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^ 
2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)-(a+2*b)*sin(f*x+e)^2*(a+b*sin(f*x+e) 
^2)^(1/2)*tan(f*x+e)/f+1/3*(a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e)^3/f
 
3.6.5.2 Mathematica [A] (verified)

Time = 3.34 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.77 \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\frac {32 a (a+2 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-4 a (5 a+8 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )-\frac {\left (32 a^2+108 a b+18 b^2+\left (64 a^2+160 a b+17 b^2\right ) \cos (2 (e+f x))-2 b (6 a+17 b) \cos (4 (e+f x))-b^2 \cos (6 (e+f x))\right ) \sec ^2(e+f x) \tan (e+f x)}{4 \sqrt {2}}}{12 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[(a + b*Sin[e + f*x]^2)^(3/2)*Tan[e + f*x]^4,x]
 
output
(32*a*(a + 2*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, 
-(b/a)] - 4*a*(5*a + 8*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF 
[e + f*x, -(b/a)] - ((32*a^2 + 108*a*b + 18*b^2 + (64*a^2 + 160*a*b + 17*b 
^2)*Cos[2*(e + f*x)] - 2*b*(6*a + 17*b)*Cos[4*(e + f*x)] - b^2*Cos[6*(e + 
f*x)])*Sec[e + f*x]^2*Tan[e + f*x])/(4*Sqrt[2]))/(12*f*Sqrt[2*a + b - b*Co 
s[2*(e + f*x)]])
 
3.6.5.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.03, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 3675, 369, 27, 439, 25, 444, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (e+f x)^4 \left (a+b \sin (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 3675

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\sin ^4(e+f x) \left (b \sin ^2(e+f x)+a\right )^{3/2}}{\left (1-\sin ^2(e+f x)\right )^{5/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {1}{3} \int \frac {3 \sin ^2(e+f x) \sqrt {b \sin ^2(e+f x)+a} \left (2 b \sin ^2(e+f x)+a\right )}{\left (1-\sin ^2(e+f x)\right )^{3/2}}d\sin (e+f x)\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\int \frac {\sin ^2(e+f x) \sqrt {b \sin ^2(e+f x)+a} \left (2 b \sin ^2(e+f x)+a\right )}{\left (1-\sin ^2(e+f x)\right )^{3/2}}d\sin (e+f x)\right )}{f}\)

\(\Big \downarrow \) 439

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\int -\frac {\sin ^2(e+f x) \left (b (3 a+8 b) \sin ^2(e+f x)+2 a (a+3 b)\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\int \frac {\sin ^2(e+f x) \left (b (3 a+8 b) \sin ^2(e+f x)+2 a (a+3 b)\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\int \frac {b \left (8 b (a+2 b) \sin ^2(e+f x)+a (3 a+8 b)\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{3 b}-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \int \frac {8 b (a+2 b) \sin ^2(e+f x)+a (3 a+8 b)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (8 (a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-a (5 a+8 b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)\right )-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (8 (a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-\frac {a (5 a+8 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (8 (a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-\frac {a (5 a+8 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {8 (a+2 b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (5 a+8 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {8 (a+2 b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (5 a+8 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {1}{3} (3 a+8 b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}+\frac {\sin ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {(a+2 b) \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}\right )}{f}\)

input
Int[(a + b*Sin[e + f*x]^2)^(3/2)*Tan[e + f*x]^4,x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(-(((a + 2*b)*Sin[e + f*x]^3*Sqrt[a + b 
*Sin[e + f*x]^2])/Sqrt[1 - Sin[e + f*x]^2]) - ((3*a + 8*b)*Sin[e + f*x]*Sq 
rt[1 - Sin[e + f*x]^2]*Sqrt[a + b*Sin[e + f*x]^2])/3 + (Sin[e + f*x]^3*(a 
+ b*Sin[e + f*x]^2)^(3/2))/(3*(1 - Sin[e + f*x]^2)^(3/2)) + ((8*(a + 2*b)* 
EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/Sqrt[1 
 + (b*Sin[e + f*x]^2)/a] - (a*(5*a + 8*b)*EllipticF[ArcSin[Sin[e + f*x]], 
-(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/Sqrt[a + b*Sin[e + f*x]^2])/3))/f
 

3.6.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 439
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a 
 + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*b*g*(p + 1))), x] + Simp[1/(2*a*b*(p 
+ 1))   Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*b*e*( 
p + 1) + (b*e - a*f)*(m + 1)) + d*(2*b*e*(p + 1) + (b*e - a*f)*(m + 2*q + 1 
))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && LtQ[p, -1] && G 
tQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3675
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^ 
(m_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b 
, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.6.5.4 Maple [A] (verified)

Time = 4.98 (sec) , antiderivative size = 419, normalized size of antiderivative = 1.52

method result size
default \(-\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b^{2} \left (\cos ^{6}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b \left (3 a +7 b \right ) \left (\cos ^{4}\left (f x +e \right )\right ) \sin \left (f x +e \right )-\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (4 a^{2}+13 a b +9 b^{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, a \left (5 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +8 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -8 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a -16 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a^{2}+2 a b +b^{2}\right ) \sin \left (f x +e \right )}{3 \left (\sin \left (f x +e \right )-1\right ) \sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(419\)

input
int((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x,method=_RETURNVERBOSE)
 
output
-1/3*((-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b^2*cos(f*x+e)^6*sin(f*x+ 
e)+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*(3*a+7*b)*cos(f*x+e)^4*sin 
(f*x+e)-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(4*a^2+13*a*b+9*b^2)*co 
s(f*x+e)^2*sin(f*x+e)-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(-b/a*cos 
(f*x+e)^2+(a+b)/a)^(1/2)*(cos(f*x+e)^2)^(1/2)*a*(5*EllipticF(sin(f*x+e),(- 
1/a*b)^(1/2))*a+8*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-8*EllipticE(sin(f 
*x+e),(-1/a*b)^(1/2))*a-16*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b)*cos(f*x 
+e)^2+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a^2+2*a*b+b^2)*sin(f*x+e 
))/(sin(f*x+e)-1)/(-(a+b*sin(f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2 
)/(1+sin(f*x+e))/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.6.5.5 Fricas [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="fricas")
 
output
integral(-(b*cos(f*x + e)^2 - a - b)*sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f 
*x + e)^4, x)
 
3.6.5.6 Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\text {Timed out} \]

input
integrate((a+b*sin(f*x+e)**2)**(3/2)*tan(f*x+e)**4,x)
 
output
Timed out
 
3.6.5.7 Maxima [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="maxima")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^4, x)
 
3.6.5.8 Giac [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e)^4,x, algorithm="giac")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^4, x)
 
3.6.5.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan ^4(e+f x) \, dx=\int {\mathrm {tan}\left (e+f\,x\right )}^4\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

input
int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(3/2),x)
 
output
int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(3/2), x)